JOURNAL OF THE CZECH PEDIATRIC SOCIETY AND THE SLOVAK PEDIATRIC SOCIETY

Čes-slov Pediat 2024, 79(5):293-298 | DOI: 10.55095/CSPediatrie2024/026

Musculoskeletal health in children with cystic fibrosisComprehensive Report

Kvido Malaska, Ondřej Souček
Pediatrická klinika, 2. lékařská fakulta, Univerzita Karlova a FN v Motole, Praha

Cystic fibrosis (CF) is a genetically determined disease that primarily affects lungs and pancreas, but also a number of other organ systems, including bones and skeletal muscles. Osteoporosis, i.e. reduced bone mineral density, together with an increased incidence of fractures, occurs in up to 28 % of individuals with CF and has a complex etiology. Osteoporosis is more common in older individuals, individuals with malnutrition, more severe clinical manifestations and impaired lung functions. Some of these factors also cause reduced muscle strength of respiratory and skeletal muscles and insufficient serum concentrations of 25-hydroxyvitamin D (25-OHD), an indicator of vitamin D reserves in the body and one of the main regulators of bone metabolism. Substitution with cholecalciferol increases the concentration of 25-OHD only in some individuals with CF. Modern treatment with CFTR (cystic fibrosis transmembrane conductance regulator) modulators leads to improvement of lung functions and nutritional status and, according to several recent pilot studies, probably has a positive effect on bone density and serum 25-OHD concentrations. New randomized controlled trials will verify the effect of vitamin D substitution on bone density and 25-OHD concentrations and clarify the effect of CFTR modulators on musculoskeletal complications.

Keywords: cystic fibrosis, bone mineral density, 25-hydroxyvitamin D, muscle strength, CFTR modulators, children

Received: April 15, 2024; Revised: April 15, 2024; Accepted: April 16, 2024; Published: November 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Malaska K, Souček O. Musculoskeletal health in children with cystic fibrosis. Ces-slov Pediat. 2024;79(5):293-298. doi: 10.55095/CSPediatrie2024/026.
Download citation

References

  1. David J, Chrastina P, Pešková K, Kožich V. Epidemiology of rare diseases detected by newborn screening in the Czech Republic. Cent Eur J Public Health 2019; 27(2): 153-159. Go to original source... Go to PubMed...
  2. Turcios NL. Cystic fibrosis lung disease: an overview. Respir Care 2020; 65: 233-251. Go to original source... Go to PubMed...
  3. Aris RM, Merkel PA, Bachrach LK, et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 2005; 90: 1888-1896. Go to original source... Go to PubMed...
  4. Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. Am J Dis Child 1938; 56: 344-399. Go to original source...
  5. Cystic Fibrosis Foundation Patient Registry - Annual Data Report 2021.
  6. Paccou J, Zeboulon N, Combescure C, et al. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int 2010; 86: 1-7. Go to original source... Go to PubMed...
  7. Mora Vallellano J, Delgado Pecellín C, Delgado Pecellín I, et al. Evaluation of bone metabolism in children with cystic fibrosis. Bone 2021; 147: 115929. Go to original source... Go to PubMed...
  8. Ubago-Guisado E, Cavero-Redondo I, Alvarez-Bueno C, et al. Bone health in children and youth with cystic fibrosis: a systematic review and meta-analysis of matched cohort studies. J Pediatr 2019; 215: 178-186.e16. Go to original source... Go to PubMed...
  9. Smith N, Lim A, Yap M, et al. Bone mineral density is related to lung function outcomes in young people with cystic fibrosis-a retrospective study. Pediatr Pulmonol 2017; 52: 1558-1564. Go to original source... Go to PubMed...
  10. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, et al. Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med 2007; 175: 951-957. Go to original source... Go to PubMed...
  11. Adult Official Positions of the ISCD 2023 https://iscd.org/official-positions-2023/
  12. Kelly A, Schall J, Stallings VA, Zemel BS. Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis. Bone 2016; 90: 7-14. Go to original source... Go to PubMed...
  13. Brookes DSK, Briody JN, Munns CF, et al. Cystic fibrosis-related bone disease in children: Examination of peripheral quantitative computed tomography (pQCT) data. J Cyst Fibros 2015; 14: 668-677. Go to original source... Go to PubMed...
  14. Gur M, Bar-Yoseph R, Diab G, et al. Understanding the interplay between factors that influence bone mineral density in CF. Pediatr Pulmonol 2020; 55: 2667-2673. Go to original source... Go to PubMed...
  15. Atlas G, Yap M, Lim A, et al. The clinical features that contribute to poor bone health in young Australians living with cystic fibrosis: A recommendation for BMD screening. Pediatr Pulmonol 2021; 56: 2014-2022. Go to original source... Go to PubMed...
  16. Sands D, Mielus M, Umławska W, et al. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis. Adv Med Sci 2015; 60: 315-320. Go to original source... Go to PubMed...
  17. Sharma S, Jaksic M, Fenwick S, et al. Accrual of bone mass in children and adolescents with cystic fibrosis. J Clin Endocrinol Metab 2017; 102: 1734-1739. Go to original source... Go to PubMed...
  18. Stollar F, Adde FV, Cunha MT, et al. Shwachman-Kulczycki score still useful to monitor cystic fibrosis severity. Clinics 2011; 66: 979-983. Go to original source... Go to PubMed...
  19. Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016; 101: 394-415. Go to original source... Go to PubMed...
  20. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911-1930. Go to original source... Go to PubMed...
  21. Daley T, Hughan K, Rayas M, et al. Vitamin D deficiency and its treatment in cystic fibrosis. J Cyst Fibros 2019; 18 Suppl 2: S66-S73. Go to original source... Go to PubMed...
  22. Turck D, Braegger CP, Colombo C, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr 2016; 35: 557-577. Go to original source... Go to PubMed...
  23. Sankararaman S, Hendrix SJ, Schindler T. Update on the management of vitamins and minerals in cystic fibrosis. Nutr Clin Pract 2022; 37: 1074-1087. Go to original source... Go to PubMed...
  24. Lai HJ, Chin LH, Murali S, et al. Vitamins A, D, E status as related to supplementation and lung disease markers in young children with cystic fibrosis. Pediatr Pulmonol 2022; 57: 935-944. Go to original source... Go to PubMed...
  25. Grey V, Atkinson S, Drury D, et al. Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics 2008; 122: 1014-1020. Go to original source... Go to PubMed...
  26. Thursfield RM, Naderi K, Leaver N, et al. Children with cystic fibrosis demonstrate no respiratory immunological, infective or physiological, consequences of vitamin D deficiency. J Cyst Fibros 2018; 17: 657-665. Go to original source... Go to PubMed...
  27. Simoneau T, Bazzaz O, Sawicki GS, Gordon C. Vitamin D status in children with cystic fibrosis. Associations with inflammation and bacterial colonization. Ann Am Thorac Soc 2014; 11: 205-210. Go to original source... Go to PubMed...
  28. Tangpricha V, Kelly A, Stephenson A, et al. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab 2012; 97: 1082-1093. Go to original source... Go to PubMed...
  29. Juhász MF, Varannai O, Németh D, et al. Vitamin D supplementation in patients with cystic fibrosis: A systematic review and meta-analysis. J Cyst Fibros 2021; 20: 729-736. Go to original source... Go to PubMed...
  30. Timmers NKLM, Stellato RK, van der Ent CK, et al. Vitamin D intake, serum 25-hydroxy vitamin D and pulmonary function in paediatric patients with cystic fibrosis: a longitudinal approach. Br J Nutr 2019; 121: 195-201. Go to original source... Go to PubMed...
  31. Mangas-Sánchez C, Garriga-García M, Serrano-Nieto MJ, et al. Vitamin D status in pediatric and young adult cystic fibrosis patients. Are the new recommendations effective? Nutrients 2021; 13. doi:10.3390/nu13124413 Go to original source... Go to PubMed...
  32. Abu-Fraiha Y, Elyashar-Earon H, Shoseyov D, et al. Increasing vitamin D serum levels is associated with reduced pulmonary exacerbations in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2019; 68: 110-115. Go to original source... Go to PubMed...
  33. Sexauer WP, Hadeh A, Ohman-Strickland PA, et al. Vitamin D deficiency is associated with pulmonary dysfunction in cystic fibrosis. J Cyst Fibros 2015; 14: 497-506. Go to original source... Go to PubMed...
  34. McCauley LA, Thomas W, Laguna TA, et al. Vitamin D deficiency is associated with pulmonary exacerbations in children with cystic fibrosis. Ann Am Thorac Soc 2014; 11: 198-204. Go to original source... Go to PubMed...
  35. Rana M, Wong-See D, Katz T, et al. Fat-soluble vitamin deficiency in children and adolescents with cystic fibrosis. J Clin Pathol 2014; 67: 605-608. Go to original source... Go to PubMed...
  36. Loukou I, Moustaki M, Sardeli O, et al. Association of vitamin D status with lung function measurements in children and adolescents with cystic fibrosis. Pediatr Pulmonol 2020; 55: 1375-1380. Go to original source... Go to PubMed...
  37. Vanstone MB, Egan ME, Zhang JH, Carpenter TO. Association between serum 25-hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 2015; 50: 441-446.
  38. Sheikh S, Gemma S, Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab 2015; 33: 180-185. Go to original source... Go to PubMed...
  39. Chirita-Emandi A, Shepherd S, Kyriakou A, et al. A retrospective analysis of longitudinal changes in bone mineral content in cystic fibrosis. J Pediatr Endocrinol Metab 2017; 30: 807-814. Go to original source... Go to PubMed...
  40. Bravo MP, Balboa P, Torrejón C, et al. Bone mineral density, lung function, vitamin D and body composition in children and adolescents with cystic fibrosis: a multicenter study. Nutr Hosp 2018; 35: 789-795. Go to original source... Go to PubMed...
  41. Wu K, Mendes PL, Sykes J, et al. Limb muscle size and contractile function in adults with cystic fibrosis: A systematic review and meta-analysis. J Cyst Fibros 2021; 20: e53-e62. Go to original source... Go to PubMed...
  42. Cardoso J, Scalco J, Mucha F, et al. Relationship between peripheral muscle strength, exercise capacity and body composition in children and adolescents with cystic fibrosis. Physiother Theory Pract 2022; 38: 3010-3017. Go to original source... Go to PubMed...
  43. Arikan H, Yatar İ, Calik-Kutukcu E, et al. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living and physical fitness in patients with cystic fibrosis and healthy subjects. Res Dev Disabil 2015; 45-46: 147-156. Go to original source... Go to PubMed...
  44. Ozipek M, Arikan H, Calik-Kutukcu E, et al. Deviations of body functions and structure, activity limitations, and participation restrictions of the International Classification of Functioning, Disability, and Health model in children with cystic fibrosis and non-cystic fibrosis bronchiectasis. Pediatr Pulmonol 2020; 55: 1207-1216. Go to original source... Go to PubMed...
  45. Gibson HT, McDonald CM, Derrick JW, et al. Evaluating changes in handgrip strength in children with cystic fibrosis: a pilot study. Nutr Clin Pract 2018; 33: 261-267. Go to original source... Go to PubMed...
  46. Bouma SF, Iwanicki C, McCaffery H, Nasr SZ. The association of grip strength, body mass index, and lung function in youth with cystic fibrosis. Nutr Clin Pract 2020; 35: 1110-1118. Go to original source... Go to PubMed...
  47. Bellini SG, Chapman P, Szendre K, et al. Changes in handgrip strength in children with cystic fibrosis compared to children without cystic fibrosis. Clin Nutr ESPEN 2021; 42: 206-211. Go to original source... Go to PubMed...
  48. Ireland A, Riddell A, Colombo A, et al. Development of musculoskeletal deficits in children with cystic fibrosis in later childhood. Bone 2023; 170: 116657. Go to original source... Go to PubMed...
  49. Putman MS, Greenblatt LB, Bruce M, et al. The effects of ivacaftor on bone density and microarchitecture in children and adults with cystic fibrosis. J Clin Endocrinol Metab 2021; 106: e1248-e1261. Go to original source... Go to PubMed...
  50. Bailey J, Rozga M, McDonald CM, et al. Effect of CFTR modulators on anthropometric parameters in individuals with cystic fibrosis: an evidence analysis center systematic review. J Acad Nutr Diet 2021; 121: 1364-1378.e2. Go to original source... Go to PubMed...
  51. Gur M, Bar-Yoseph R, Hanna M, et al. Effect of Trikafta on bone density, body composition and exercise capacity in CF: A pilot study. Pediatr Pulmonol 2023; 58: 577-584. Go to original source... Go to PubMed...
  52. Sermet-Gaudelus I, Delion M, Durieu I, et al. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros 2016; 15: e67-e69. Go to original source... Go to PubMed...
  53. Wright BA, Ketchen NK, Rasmussen LN, et al. Impact of elexacaftor/tezacaftor/ivacaftor on vitamin D absorption in cystic fibrosis patients. Pediatr Pulmonol 2022; 57: 655-657. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.