JOURNAL OF THE CZECH PEDIATRIC SOCIETY AND THE SLOVAK PEDIATRIC SOCIETY

Čes-slov Pediat 2025, 80(2):68-75 | DOI: 10.55095/CSPediatrie2025/008

Phospho-calcium metabolism disorders

Milan Bayer
Klinika dětí a dorostu, 3. lékařská fakulta, Univerzita Karlova a FN Královské Vinohrady, Praha

Vápník a fosfor jsou důležitými minerály, na jejichž metabolismu a

homeostáze se v organismu podílí celá řada hormonů a orgánů, zejména skelet, příštítná tělíska, gastrointestinální trakt a ledviny. Poruchy fosfokalciového metabolismu mohou být spojeny s nefyziologickými koncentracemi těchto minerálů v séru, patologickými ději v kostní tkáni a poruchami hlavních regulačních systémů, hlavně příštítných tělísek, ledvin a gastrointestinálního traktu.

Calcium and phosphorus are important minerals whose metabolism and homeostasis in the body involve many hormones and organs, especially the skeleton, parathyroid glands, digestive tract and kidneys. Disturbances in phospho-calcium metabolism may be associated with non-physiological serum

concentrations of these minerals, pathological processes in bone tissue, and disturbances in major regulatory systems, particularly the parathyroid glands, kidneys, and gastrointestinal tract.

Keywords: calcium, phosphorus, hypercalcemia, hypocalcemia, hyperphosphatemia, hypophosphatemia, treatment

Accepted: February 7, 2025; Published: May 20, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bayer M. Phospho-calcium metabolism disorders. Ces-slov Pediat. 2025;80(2):68-75. doi: 10.55095/CSPediatrie2025/008.
Download citation

References

  1. . White KE, Econs MJ. Fibroblast growth factor-23 (FGF23). In: Rosen CJ (ed.). Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. 8th edition. 2013: 194-199. Go to original source...
  2. . Tinawi M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 2021; 13(1): e12420. Go to original source... Go to PubMed...
  3. . Carpenter TO. Primary disorders of phosphate metabolism. [Updated 2022 Jun 8]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279172/
  4. . Blau JE, Simonds WF. Familial hyperparathyroidism. Front Endocrinol (Lausanne) 2021; 12: 623667. Go to original source... Go to PubMed...
  5. . Roszko KL, Bi RD, Mannstadt M. Autosomal dominant hypocalcemia (hypoparathyroidism) types 1 and 2. Front Physiol 2016; 7: 458. Go to original source... Go to PubMed...
  6. . Nissenson RA, Juppner H. Parathyroid hormone. In: Rosen CJ (ed.). Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. 8th edition. 2013: 208-214. Go to original source...
  7. . Shaker JL, Deftos L. Calcium and phosphate homeostasis. [Updated 2023 May 17]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279129/
  8. . On JSW, Chow BKC, Lee LTO. Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol 2015. Dostupné z: 10.3389/fendo.2015.00028 Go to original source... Go to PubMed...
  9. . Lehmann U, Hirche F, Stangl GI, et al. Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. J Clin Endocrinol Metab 2013; 98: 4339-4345. Go to original source... Go to PubMed...
  10. . Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention od vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911-1930. Go to original source... Go to PubMed...
  11. . Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res 2014; 114(2): 379-393. Go to original source... Go to PubMed...
  12. . Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319-329. Go to original source... Go to PubMed...
  13. . Gil A, Plaza-Diaz J, Mesa MD. Vitamin D: classic and novel actions. Ann Nutr Metab 2018; 72(2): 87-95. Go to original source... Go to PubMed...
  14. . Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444: 770-774. Go to original source... Go to PubMed...
  15. . Goltzman D. Approach to hypercalcemia. [Updated 2023 Apr 17]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279129/
  16. . Colantonio DA, Kyriakopoulou L, Chan KM, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population in children. Clin Chem 2012; 58(5): 854-68. Go to original source... Go to PubMed...
  17. . Auron A, Alon US. Hypercalcemia: a consultant's approach. Pediatr Nephrol 2018; 33(9): 1475-1488. Go to original source... Go to PubMed...
  18. . Gorvin CM. Genetic causes of neonatal and infantile hypercalcaemia. Pediatr Nephrol 2022; 37(2): 289-301. Go to original source... Go to PubMed...
  19. . Canaff L, Guarnieri V, Kim Y, et al. Novel glial cells missing-2 (GCM2) variants in parathyroid disorders. Eur J Endocrinol 2022; 186(3): 351-366. Go to original source... Go to PubMed...
  20. . Kifor O, Moore FD Jr, Delaney M, et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab 2003; 88(1): 60-72. Go to original source... Go to PubMed...
  21. . Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res 2017; 32(11): 2157-2170. Go to original source... Go to PubMed...
  22. . Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365(5): 410-421. Go to original source... Go to PubMed...
  23. . Saponaro F. Rare causes of hypercalcemia. Endocrinol Metab Clin North Am 2021; 50(4): 769-779. Go to original source... Go to PubMed...
  24. . Saarela T, Similä S, Koivisto M. Hypercalcemia and nephrocalcinosis in patients with congenital lactase deficiency. J Pediatr 1995; 127: 920-923. Go to original source... Go to PubMed...
  25. . Nadar R, Shaw N. Investigation and management of hypocalcaemia. Arch Dis Child 2020; 105(4): 399-405. Go to original source... Go to PubMed...
  26. . Bastepe M, Gensure RC. Hypoparathyroidism and pseudohypoparathyroidism. [Updated 2024 May 8]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279165/
  27. . Astor MC, Lovas K, Wolff AS, et al. Hypomagnesemia and functional hypoparathyroidism due to novel mutations in the Mg-channel TRPM6. Endocr Connect 2015; 4(4): 215-22. Go to original source... Go to PubMed...
  28. . Duchatelet S, Ostergaard E, Cortes D, et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005; 14(1): 1-5. Go to original source... Go to PubMed...
  29. . Bharill S, Wu M. Hypocalcaemia and hypercalcaemia in children. Pediatr Rev 2023; 44(9): 533-536. Go to original source... Go to PubMed...
  30. . Fabi M, Gesuete V, Petrucci R, et al. Dilated cardiomyopathy due to hypocalcaemic rickets: is it always a reversible condition? Cardiol Young 2013; 23(5): 769-72. Go to original source... Go to PubMed...
  31. . Bayer M. Hypokalcemie. In: Bayer M, Kutílek Š, Feber J, Gut J. Metabolická onemocnění skeletu u dětí. Praha: Grada Publishing 2002: 153-166.
  32. . Portales-Castillo I, Rieg T, Khalid SB, et al. Physiopathology of phosphate disorders. Adv Kidney Dis Health 2023; 30(2): 177-188. Go to original source... Go to PubMed...
  33. . Eswarakumar AS, Ma NS, Ward LM, et al. Long-term follow-up of hypophosphatemic bone disease associated with elemental formula use: sustained correction of bone disease after formula change or phosphate supplementation. Clin Pediatr (Phila) 2020; 59(12): 1080-1085. Go to original source... Go to PubMed...
  34. . Michigami T. Advances in understanding of phosphate homeostasis and related disorders. Endocrine J 2022; 69(8): 881-896. Go to original source... Go to PubMed...
  35. . Ferreira CR, Hackbarth ME, Ziegler SG, et al. Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med 2021; 23(2): 396-407. Go to original source... Go to PubMed...
  36. . Imel EA. Congenital conditions of hypophosphatemia in children. Calcif Tissue Int 2021; 108(1): 74-90. Go to original source... Go to PubMed...
  37. . Bowe AE, Finnegan R, Jan de Beur SM, et al. FGF-23 inhibits renal tubular P transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284: 977-981. Go to original source... Go to PubMed...
  38. . Bergwitz C, Miyamoto K-I. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflügers Arch 2019; 471(1): 149-163. Go to original source... Go to PubMed...
  39. . Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009; 27: 392-401. Go to original source... Go to PubMed...
  40. . Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393(10189): 2416-2427. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.